La vida animal en los mares no sería posible sin los organismos unicelulares del fitoplancton, que flotan por miles en cada gota de agua en las capas superiores del mar…
Oxígeno. La abundancia de vida animal en el océano ha proporcionado desde tiempos inmemoriales una enorme variedad de servicios, desde el alimento a la aventura y el ocio. Pero nada de esto sería posible sin los organismos unicelulares del fitoplancton, que flotan por miles en cada gota de agua en las capas superiores del mar.
El fitoplancton comprende dos grupos principales: las cianobacterias fotosintéticas y las algas unicelulares que se desplazan cerca de la superficie iluminadas por el sol de los océanos. La hacen en la denominada zona eufótica, que puede alcanzar una profundidad de hasta 200 metros en las zonas tropicales.
Como escribí en un artículo anterior, las plantas con estructuras mayores y más complejas son las que tienen un balance de producción de oxígeno menor. O lo que es lo mismo, aquellas con una estructura sencilla (mucho “verde” y poco “tronco”, dicho sea por simplificar) son las que presentan una mayor producción de oxígeno neta.
Siguiendo ese razonamiento, parece lógico pensar que las grandes productoras de oxígeno son las praderas, los bosques jóvenes, los cultivos y casi todas las plantas en crecimiento que nos rodean, que desprenden más oxígeno del que consumen. No es así.
¿Dónde se encuentran las poblaciones vegetales que se multiplican continuamente y no cesan de crecer?
Desde hace un par décadas, las imágenes de los satélites Nimbus de la Nasa y de la Agencia Meteorológica estadounidense mostraban que la productividad oceánica, evaluada en función de la clorofila concentrada en la superficie marina, podía ser superior a la productividad de los ecosistemas terrestres. Esto hizo suponer que el fitoplancton era el gran oxigenador del planeta.
La hipótesis fue confirmada en 2015 por el proyecto internacional Tara Oceans, cuyos resultados concluyeron que el fitoplancton genera al menos la mitad del oxígeno que respiramos (unos 270 000 millones de toneladas al año) y transfiere unas 10 gigatoneladas de carbono de la atmósfera a las profundidades del océano cada año.
Esto resulta esencial para mantener la vida sobre la Tierra y mitigar los efectos del cambio climático.
El fitoplancton posee clorofila, el pigmento que hace posible la fotosíntesis. Además de esto, sirve como alimento al zooplancton, que a su vez alimenta a otros animales marinos. Miles de millones de plantas microscópicas que habitan el seno de los océanos realizan su ciclo de renovación y muerte en apenas unos días.
Ese infinito universo que nace y muere continuamente, el fitoplancton, es la bomba que produce la mayor parte del O₂ que respiramos. Pero, además de absorber la luz y de liberar O₂, la clorofila permite a estas minúsculas plantas retirar el CO₂ disuelto para fijarlo, en forma de carbohidratos, a sus estructuras biológicas.
Ahí reside el papel crucial del fitoplancton en el ciclo del carbono y, como consecuencia, en su colosal capacidad para purificar el aire. Gracias a la fotosíntesis, el fitoplancton consume CO₂ a una escala equivalente a los ecosistemas terrestres. Se calcula que cada año incorpora entre 45 y 50 millones de toneladas de carbono inorgánico. Las plantas terrestres incorporan unos 52 millones de toneladas de carbono al año, pero este regresa a la atmósfera a corto o medio plazo. Cuando el fitoplancton muere, parte del carbono captado cae a las profundidades del océano.
Un fabricante de oxígeno muy lento
El 85 % de la materia orgánica creada cada año por el fitoplancton se recicla entre los organismos que viven en las aguas iluminadas, mientras que 15 % restante se pierde en las profundidades del océano. Allí, donde los microorganismos han eliminado el oxígeno del agua, los restos de materia orgánica permanecen enterrados en condiciones anaeróbicas. Esta materia vegetal sepultada en el fondo del océano es la fuente del petróleo y el gas.
Solo una pequeña fracción, alrededor de la milésima parte de la fotosíntesis a nivel mundial, escapa a los procesos descritos y se agrega al oxígeno atmosférico. Pero desde la aparición de las cianobacterias, los primeros organismos fotosintéticos, hace entre 3 500 y 3 800 millones de años, el oxígeno residual dejado por el pequeño desequilibrio entre crecimiento y descomposición se ha acumulado para formar el depósito de oxígeno respirable del que depende toda la vida y cuyo volumen representa un 21 % del total de la atmósfera.
El balance se compensa con una elevada tasa de renovación. La alta tasa de reproducción del fitoplancton hace que sus poblaciones se renueven más rápidamente de lo que son consumidas. Un tiburón ballena que se alimenta de millones de estas pequeñas células fotosintéticas solo es capaz de parir una cría al año. En cambio, una diatomea es capaz de generar cada día un millón de descendientes.
De esta forma, las cuentas del equilibrio de la vida sí cuadran.
Fuente: El País